hRad9 Rapidly Binds DNA Containing Double-Strand Breaks and Is Required for Damage-dependent Topoisomerase II Binding Protein 1 Focus Formation

نویسندگان

  • Deborah A. Greer
  • Blair D. A. Besley
  • Katherine B. Kennedy
  • Scott Davey
چکیده

Checkpoint proteins protect the genomic integrity of a cell, repeatedly impaired by DNA damage and normal cellular processes, such as replication. Checkpoint proteins hRad9, hRad1, and hHus1 form a heterotrimeric complex that is thought to act as a genomic surveyor of DNA damage. We show here that, when DNA double-strand breaks (DSBs) are specifically generated in a subnuclear area, hRad9 is rapidly retained at the damaged DNA, within 2 min of damage induction. Rapid localization of hRad9 to regions of DNA containing DSBs is most efficient during replication. Furthermore, hRad9 colocalizes with the phosphorylated form of damage-response protein H2AX ( H2AX) after DNA damage. This localization is independent of the damage repair kinase ataxia telangiectasia-mutated kinase (ATM), because hRad9/ H2AX colocalization still occurs in ATM / fibroblasts. Secondly, hRad9 interacts with replication and checkpoint protein topoisomerase II binding protein 1 (TopBP1) before and after DNA damage, and this interaction is dependent on the COOH-terminal 17 amino acids of hRad9. Overexpression of a COOH-terminally deleted form of hRad9 abolishes the colocalization of TopBP1 to H2AX, ablating TopBP1 but not H2AX foci formation. The loss of TopBP1 containing foci, but not of H2AX containing foci, indicates that hRad9 is required for TopBP1 focus formation after damage, but is not required for H2AX formation at DSBs. These results are consistent with a model in which the hRad9/hHus1/hRad1 complex acts as a checkpoint sensor during S phase by rapidly localizing to sites of DNA damage and transducing checkpoint responses by facilitating proper localization of downstream checkpoint proteins, including TopBP1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hRad9 rapidly binds DNA containing double-strand breaks and is required for damage-dependent topoisomerase II beta binding protein 1 focus formation.

Checkpoint proteins protect the genomic integrity of a cell, repeatedly impaired by DNA damage and normal cellular processes, such as replication. Checkpoint proteins hRad9, hRad1, and hHus1 form a heterotrimeric complex that is thought to act as a genomic surveyor of DNA damage. We show here that, when DNA double-strand breaks (DSBs) are specifically generated in a subnuclear area, hRad9 is ra...

متن کامل

A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival.

BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage-signaling pathways. Human DNA topoisomerase II binding protein 1 (TopBP1) contains eight BRCT motifs and shares sequence similarity with the fission yeast Rad4/Cut5 protein and the budding yeast DPB11 protein, both of which are required for DNA damage and/or replication checkpoint ...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

Molecular Pathways Transcription-Induced DNA Double Strand Breaks: Both Oncogenic Force and Potential Therapeutic Target?

An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003